Enlaces accesibilidad

Hallan por primera vez una estrella que gira alrededor de un magnetar

  • Un magnetar es un remanente muy denso de una explosión de supernova
  • Podría haberse formado por dos estrellas en órbita cercanas
  • La rápida rotación de las dos estrellas generaría un fuerte campo magnético

Por
Impresión artística del magnetar en el cúmulo estelar Westerlund 1
Impresión artística del magnetar en el cúmulo estelar Westerlund 1

Un equipo de astrónomos europeos cree haber hallado, por primera vez, a la estrella compañera de un magnetar, que son unos extraños remanentes superdensos de explosiones de supernovas millones de veces más potentes que los imanes más fuertes de la Tierra.

El hallazgo, conseguido gracias al telescopio VLT (Very Large Telescope) del Observatorio Austral Europeo (ESO),  puede ayudar a explicar cómo se forman los magnetares, un misterio abierto desde hace 35 años, y por qué esta estrella particular no colapsó en agujero negro tal y como esperarían los astrónomos, según informa el ESO.

Cómo se forma un magnetar

Cuando una estrella masiva colapsa por su propia gravedad durante una explosión de supernova, puede formar, o bien una estrella de neutrones o un agujero negro.

Los magnetares son una forma inusual y muy exótica de estrella de neutrones. Como todos estos objetos extraños, son pequeños y extraordinariamente densos -una cucharadita de materia de estrella de neutrones tendría una masa de aproximadamente mil millones de toneladas- pero también tienen campos magnéticos extremadamente potentes.

Las superficies de los magnetares liberan grandes cantidades de rayos gamma cuando atraviesan una etapa de ajuste repentino, conocida como un terremoto estelar, consecuencia de las enormes tensiones que tienen lugar en sus cortezas.

Una estrella masiva transformada en magnetar

El cúmulo estelar Westerlund 1, situado a 16.000 años luz de la Tierra, en la constelación austral de Ara (el Altar), alberga uno de las dos docenas de magnetares conocidos en la Vía Láctea. Se llama CXOU J164710.2-455216 y ha intrigado enormemente a los astrónomos.

"En nuestro anterior trabajo demostramos que el magnetar del cúmulo Westerlund 1 debe haber nacido de la explosiva muerte de una estrella con unas 40 veces la masa del Sol. Pero este hecho representa un problema en sí mismo, ya que se supone que, tras morir, las estrellas tan masivas colapsan para formar agujeros negros, no estrellas de neutrones. No entendíamos cómo podía haberse transformado en magnetar", afirma Simon Clark, autor principal del artículo que plasma estos resultados.

Los astrónomos sugirieron que el magnetar se formó por las interacciones de dos estrellas muy masivas en órbita una en torno a la otra, en un sistema binario tan compacto que encajaría dentro de la órbita de la Tierra alrededor del Sol.

Hasta ahora no se había detectado ninguna estrella acompañante en la ubicación del magnetar en Westerlund 1, así que los astrónomos utilizaron el VLT para buscarlo en otras partes del cúmulo y se descubrió que una estrella, conocida como Westerlund 1-5, parecía encajar perfectamente con lo que buscaban.

Reconstrucción de la formación del magnetar

Esta estrella, además de tener una alta velocidad por estar impulsada por una explosión de supernova, tiene una baja masa, alta luminosidad y abundancia de carbono en la composición, añade Ben Ritchie (Open University), coautor del nuevo artículo.

Este descubrimiento permitió a los astrónomos reconstruir la historia de la vida de la estrella que permitió la formación del magnetar en lugar del esperado agujero negro.

En la primera etapa de este proceso, la estrella más masiva de la pareja comienza a quedarse sin combustible, transfiriendo sus capas externas a su compañera menos masiva -que está destinada a convertirse en magnetar- haciendo que gire cada vez más rápido.

Esta rápida rotación parece ser el ingrediente esencial en la formación del campo magnético ultrafuerte del magnetar.

En la segunda etapa, como resultado de esta transferencia de masa, la propia compañera llega a ser tan masiva que, a su vez, desprende una gran cantidad de la masa recientemente adquirida.

Gran parte de esta masa se pierde, pero una parte pasa de nuevo a la estrella original, la que todavía hoy vemos brillando y conocemos como Westerlund 1-5.

La clave, formar parte de una estrella doble

"Este proceso de intercambio de material ha sido el que ha proporcionado a Westerlund 1-5 su firma química única, y el que ha permitido que la masa de su compañera encoja a niveles lo suficientemente bajos como para que nazca un magnetar en lugar de un agujero negro", concluye Francisco Najarro, de Centro de Astrobiología (España) y miembro del equipo de investigación.

Por tanto, en la receta para formar un magnetar, parece que un ingrediente fundamental es formar parte de una estrella doble.

La rápida rotación generada por la transferencia de masas entre las dos estrellas parece necesaria para generar el campo magnético ultrafuerte y, posteriormente, una segunda fase de transferencia de masa permite al futuro magnetar adelgazar lo suficiente como para no colapsar en agujero negro en el momento de su muerte.