Enlaces accesibilidad

Un nuevo refrigerante magnético alcanza temperaturas cercanas al cero absoluto (-273,15°C)

  • El material combina moléculas magnéticas con nanotubos de carbono
  • Abre nuevas posibilidades en el campo de la criogenia a temperaturas muy bajas
  • Las tecnologías convencionales emplean helio líquido
  • Lo han desarrollado científicos españoles del CSIC

Por
Material compuesto basado en el acetato de gadolinio y nanotubos de carbono. Derecha: vista a escala nanométrica a través de un microscopio electrónico de transmisión. Izquierda: vista de la lámina.
Material compuesto basado en el acetato de gadolinio y nanotubos de carbono. Derecha: vista a escala nanométrica a través de un microscopio electrónico de transmisión. Izquierda: vista de la lámina.

Un equipo del Instituto de Ciencia de Materiales de Aragón (un centro mixto del Consejo Superior de Investigaciones Científicas -CSIC- y la Universidad de Zaragoza) ha obtenido un nuevo refrigerante magnético combinando moléculas magnéticas con nanotubos de carbono.

El material compuesto permite llegar eficazmente a temperaturas cercanas al cero absoluto (-273,15°C) por medio de la refrigeración magnética. La investigación, publicada en la revista Material Horizons, abre nuevas posibilidades en el campo de la criogenia a temperaturas muy bajas.

La versatilidad de los materiales moleculares y, en concreto, la posibilidad de manipularlos en una solución química, ha permitido a los investigadores desarrollar un material compuesto en el cual las moléculas de acetato de gadolinio, un refrigerante magnético molecular, están ancladas a nanotubos de carbono. “La clave está en desarrollar materiales compuestos basados en la funcionalización de nanotubos de carbono con moléculas magnéticas, de tal manera que la alta conductividad térmica de los primeros se una con el alto efecto magnetocalórico de estas últimas”, explica el investigador del CSIC Olivier Roubeau.

El efecto magnetocalórico es el cambio de temperatura que algunos materiales experimentan como reacción a una modificación en el campo magnético aplicado. Este efecto es la base de la refrigeración magnética, una tecnología alternativa a las convencionales, las cuales emplean el helio líquido para alcanzar temperaturas muy bajas.

“En nuestro trabajo hemos medido por primera vez la conductividad térmica de un refrigerante magnético molecular, el acetato de gadolinio tetrahidrato, y también mostramos el impacto de su baja conductividad térmica en su poder refrigerante. Cuando el material tiene un espesor muy reducido, no se experimenta una pérdida del poder refrigerante por unidad de masa, mientras que este decae fuertemente al emplear capas más gruesas, con lo que el material pierde interés tecnológico”, precisa el investigador del CSIC.

El estudio muestra cómo, al mejorar el intercambio térmico mediante el anclaje de las moléculas a un componente ligero y buen conductor, es posible alcanzar temperaturas más bajas. Asimismo, la investigación abre nuevas vías en el ámbito de los materiales híbridos multifuncionales.